metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jing-Min Shi,* Xia Zhang, Jian-Jun Lu, Lian-Dong Liu and Jian-Ping Ma

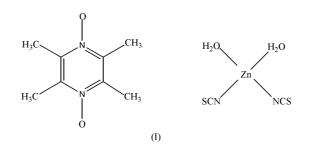
Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: shijingmin@beelink.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.035 wR factor = 0.096 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

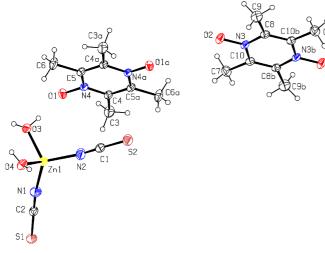

The 1:1 adduct of 2,3,5,6-tetramethylpyrazine 1,4-dioxide and diaquabis(thiocyanato- κN)-zinc(II) (ATD)

In the crystal structure of the title adduct, $C_8H_{12}N_2O_2$ ·[Zn(NCS)₂(H₂O)₂], the organic and inorganic molecules are connected by O-H···O hydrogen bonds, with O···O distances ranging from 2.640 (2) to 2.677 (3) Å. There are two independent 2,3,5,6-tetramethylpyrazine 1,4-dioxide molecules, both of which lie on crystallographic inversion centers; the asymmetric unit contains two organic halfmolecules and one inorganic molecule.

Received 19 November 2004 Accepted 30 November 2004 Online 11 December 2004

Comment

Many multinuclear and polymeric complexes have been synthesized using thiocyanate as a bridging ligand, and some exhibit special physical properties (Shen & Xu, 2001; Shi *et al.*, 2005). In our recent experiments, we have shown that 2,3,5,6tetramethylpyrazine 1,4-dioxide exhibits bridging properties. Our intention was to design a polymeric complex using zinc(II) ions and the bridging ligands thiocyanate and 2,3,5,6tetramethylpyrazine 1,4-dioxide, but in our attempt only the title adduct, (I), was obtained. The crystal structure is described here.



In the title structure, the asymmetric unit contains one Zn^{II} complex and two half-molecules of 2,3,5,6-tetramethylpyrazine 1,4-dioxide, the complete molecules being generated by inversion symmetry. In the metal complex, the Zn atom is coordinated by two N atoms from two isothiocyanate anions and two O atoms from two water molecules. The Zn atom is in a distorted tetrahedral coordination environment (see Table 1). The non-H atoms of 2,3,5,6-tetrapyrazine 1,4-dioxide are essentially coplanar. Fig. 1 shows the Zn complex and two complete molecules of 2,3,5,6-tetramethylpyrazine 1,4-dioxide. Fig. 2 displays the unit cell and the arrangements of the two components. The 2,3,5,6-tetramethylpyrazine 1,4-dioxide molecules are approximately perpendicular to the b axis, but there are no significant π - π stacking interactions. In the crystal structure, the Zn^{II} complex molecules and the organic molecules are connected through $O-H \cdots O$ hydrogen bonds to form sheets in the [010] plane (see Table 2 and Fig. 2).

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

metal-organic papers

Figure 1

View of the adduct, with the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Although the asymmetric unit contains two half molecules of 2,3,5,6-tetramethylpyrazine 1,4-dioxide both complete molecules are shown, and atoms labeled with suffixes 'a' and 'b' are related by the symmetry operators (1 - x, 1 - y, -1 - z) and (2 - x, -1 - z)2 - y, 1 - z), respectively.

Packing diagram, with O-H···O hydrogen bonds are shown as dashed lines.

Experimental

To a solution (15 ml) containing $Zn(ClO_4) \cdot 6H_2O$ (0.2540 g, 0.68 mmol), NaSCN (0.1120 g, 1.38 mmol) and 2,3,5,6-tetramethylpyrazine 1,4-dioxide (0.1156 g, 0.69 mmol) were added and the solution was stirred for a few minutes. Colorless single crystals were obtained after the solution was allowed to stand at room temperature for two weeks.

Crystal data

$C_{8}H_{12}N_{2}O_{2}\cdot[Zn(NCS)_{2}(H_{2}O)_{2}]$ $M_{r} = 385.80$ Monoclinic, $P2_{1}/c$ a = 15.563 (4) Å b = 7.2595 (17) Å c = 15.425 (4) Å $\beta = 113.412 (3)^{\circ}$	$D_x = 1.602 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 4535 reflections $\theta = 2.4-26.9^{\circ}$ $\mu = 1.82 \text{ mm}^{-1}$ T = 298 (2) K
V = 1599.2 (7) Å ³ Z = 4	Prism, colorless $0.46 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.527, T_{max} = 0.697$ 9037 measured reflections	3454 independent reflections 2918 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.0^{\circ}$ $h = -12 \rightarrow 19$ $k = -9 \rightarrow 8$ $l = -19 \rightarrow 19$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 1.053454 reflections 205 parameters H atoms treated by a mixture of independent and constrained refinement

$\theta_{\rm max} = 27.0^{\circ}$
$h = -12 \rightarrow 19$
$k = -9 \rightarrow 8$
$l = -19 \rightarrow 19$
$w = 1/[\sigma^2(F_o^2) + (0.0549P)^2]$
+ 0.12P]

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.41 \text{ e Å}$ -3 $\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0302 (15)

Table 1

n2h

Selected geometric parameters (Å, °).

Zn1-N1	1.924 (2)	Zn1-O3	1.9806 (16)	
Zn1-N2	1.930 (2)	Zn1-O4	1.9820 (17)	
N1-Zn1-N2	116.23 (10)	N1-Zn1-O4	108.49 (9)	
N1-Zn1-O3	$111.67 (9) \\108.14 (8)$	N2-Zn1-O4	112.67 (9)	
N2-Zn1-O3		O3-Zn1-O4	98.20 (8)	

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H1···O1	0.82	1.82	2.640 (2)	176
$O3-H2\cdots O2^i$	0.87 (3)	1.84 (3)	2.677 (3)	163 (3)
$O4-H3\cdots O1^{ii}$	0.77 (3)	1.90 (3)	2.656 (2)	165 (3)
$O4-H4\cdots O2^{i}$	0.82	1.88	2.676 (3)	162

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y - 1, z.

H atoms bonded to C atoms were included in calculated positions, with C-H distances of 0.96 Å and $U_{iso} = 1.5U_{eq}(C)$. Of the four H atoms (H1, H2, H3 and H4) bonded to the coordinated water molecules (O1 and O2), H1 and H4 were included in calculated positions, with O-H = 0.82 Å and $U_{iso} = 1.5U_{eq}(O)$, while H2 and H3 were refined independently with isotropic displacement parameters.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20271043) and the Natural Science Foundation of Shandong Province of China (No. Y2002B10) for support.

References

- Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shen, L. & Xu, Y.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 3413-3414.
- Shi, J.-M., Xu, W., Zhao, B., Cheng, P., Liao, D.-Z. & Chen, X.-Y. (2005). Eur. J. Inorg. Chem. In the press.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.